An intragenic revertant of a poliovirus 2C mutant has an uncoating defect.
نویسندگان
چکیده
A revertant was isolated from a temperature-sensitive poliovirus 2C mutant, 2C-31, which is defective in viral RNA synthesis. This revertant, called 2C-31R1, grew well at 39 degrees C and was not defective in RNA synthesis. However, in contrast to its parental mutant, 2C-31R1 was cold sensitive and could hardly grow at all at 32 degrees C. Analysis of a single-cycle growth revealed that 2C-31R1 was defective in virion uncoating at 32 degrees C, and a substantial amount (more than 30%) of input viruses could be recovered as infectious particles from an infected cell lysate up to 6 h postinfection. The uncoating defect and the inability to grow at cold temperatures could be overcome by a brief incubation at the permissive temperature (39 degrees C) before the infection was continued at 32 degrees C. cDNA cloning and mix-and-match recombination experiments indicated that the defect in uncoating was the result of two secondary point mutations, seven nucleotides apart, in the 2C-coding sequence downstream of the inserted linker which is the original mutation in the parental 2C-31 genome. Another revertant, 2C-31R3, isolated from the same 2C-31 stock, was not defective in uncoating and appeared to be a secondary revertant that contained an intragenic suppressor for the uncoating defect. The uncoating defect of 2C-31R1 could be complemented by type 2 poliovirus. These results suggested that protein 2C, in addition to its role in viral RNA synthesis, has a function in determining virion structure.
منابع مشابه
A Single Amino Acid Substitution in Poliovirus Nonstructural Protein 2CATPase Causes Conditional Defects in Encapsidation and Uncoating
UNLABELLED The specificity of encapsidation of C-cluster enteroviruses depends on an interaction between capsid proteins and nonstructural protein 2C(ATPase) In particular, residue N252 of poliovirus 2C(ATPase) interacts with VP3 of coxsackievirus A20, in the context of a chimeric virus. Poliovirus 2C(ATPase) has important roles both in RNA replication and encapsidation. In this study, we searc...
متن کاملCharacterization of the poliovirus 147S particle: new insights into poliovirus uncoating.
A Sabin 1 strain poliovirus (PV) mutant, S1(2Y-1I), carrying a Tyr at amino acid position VP2(142) and an Ile at position VP1(160), can establish persistent infections in HEp-2c cells. This mutant forms atypical 147S particles upon interaction at 0 degrees C with either cells expressing PV receptor (PVR) CD155, or PVR-IgG2a, a chimeric molecule consisting of an extracellular moiety of PVR and t...
متن کاملAlanine Scanning of Poliovirus 2C Reveals New Genetic Evidence that Capsid Protein/2C Interactions Are Essential for Morphogenesis
Polypeptide 2C is one of the most thoroughly studied but least understood proteins in the life cycle of poliovirus. Within the protein, multiple functional domains important for uncoating, host cell membrane alterations, and RNA replication and encapsidation have previously been identified. In this study, charged to alanine-scanning mutagenesis was used to generate conditional-lethal mutations ...
متن کاملGenetic analysis of poliovirus protein 3A: characterization of a non-cytopathic mutant virus defective in killing Vero cells.
A mutational and genetic analysis of the poliovirus protein 3A has led to the identification of a single amino acid mutant virus with a restrictive phenotype to form plaques in Vero cells. This mutant (I46T 3A) can be grown and amplified in HeLa cells, where virus replication takes place at wild-type levels. However, Vero cells infected with this virus cannot complete the growth cycle. I46T 3A ...
متن کاملABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling.
The plant hormone abscisic acid (ABA) is a key regulator of seed maturation and germination and mediates adaptive responses to environmental stress. In Arabidopsis, the ABI1 gene encodes a member of the 2C class of protein serine/threonine phosphatases (PP2C), and the abi1-1 mutation markedly reduces ABA responsiveness in both seeds and vegetative tissues. However, this mutation is dominant and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 64 3 شماره
صفحات -
تاریخ انتشار 1990